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Abstract

Different models used to describe chip-calorimeters and to simulate their thermal behavior are presented together with the physical basics
of heat transfer. Different methods to deconvolute the measured signals are explained. One model example for a certain chip-calorimeter is
given in more detail to show the procedure.
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1. Introduction ods to calculate the quantities of interest from the measured
curves. The construction of the calorimeters was such to give
During the last years so-called chip- or IC-calorimeters a signal strictly proportional to the heat flow rate into the
have more and more been used to measure caloric and othesample itself with a “calibration factor” almost not influ-
thermal properties of small samples. They are even suitableenced by the heat transfer to the sample and its heat capacity.
to measure the respective properties of thin films. The advan-The price to be paid for this comfort was a rather low sen-
tages of these very small calorimeters are the small size, asitivity of the calorimeter, with a need of large samples, and
low thermal inertia, a rather small time constant and a high large time constants in the range from some seconds up to
sensitivity. However, the theory of such calorimeters and the many minutes in the case of very sensitive “micro calorime-
mathematics for the deconvolution of the sample propertiesters”.
from the measurements is much more complicated than for Nowadays PCs in laptop size are available for everyone
common calorimeters. The pathway of the heat flow cannot with a computing power comparable to mainframe comput-
be approximated by a one-dimensional model and the heaters filling a large room in the seventies. With this hardware
capacity of the sample is often in the same order of magni- and modern computer algebra systems it became possible for
tude as the heat capacity of the calorimeter “cell”, which in everyone to solve even complicated differential equation sys-
many chips consists only of a very thin silica membrane. In tems and calculate the quantities of interest. It is possible to
classical calorimeters the “cell” is much larger in mass and calculate the heat flow rate into the sample in dependence
heat capacity than the sample. This is done to avoid an influ- of the sample temperature “online” during the measurement
ence of the sample on the sensitivity of the calorimeter and proceeds. Such techniques enable the scientist to construct
free the calibration factor from sample properties. very sensitive, small calorimeters with low time constants
At those times, when the classical calorimeters were built, in the millisecond region and get reliable results even for
no computers existed and all evaluation was done by hand.very small samples and fast processes. This opens the door
Therefore there was a need for simple formulas and meth-to caloric properties as well as to thermodynamics of thin

films.
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of proceeding on the basis of commercially available chip- a uniform condensed medium via energy transport. A wave-
calorimeters. In the last chapter one possible way to modellike solution of the differential equation has the form:

a commercial chip-calorimeter is presented as an example.

This is, of course, not the only way to model such calorime- T = To expli(k-r — wr)] ®)
ters, it may, however, serve as a guideline for other setups ag,,
well as an example for the power and success of this type of
modeling.

ith w is the angular frequencly, the wave vector andthe
radius vector. Eq(5) is a solution of the differential Eq4)

if Dihk? =iw, this describes the so-called dispersion relation
for that case.

In the one-dimensional semi-infinite case when the tem-

2. Models and methods perature az=0 is varied periodically with time like

2.1. Physical basics T(0,t) = T4 coswt (6)

Heat and heat flow rates are determined in most of the the solution reads (for details see textbooks of thermal
calorimeters by measuring temperatures or temperature dif-Physics):

ferences. Heat needs temperature gradients to flow. For the z z
transport of energy in form of heat Fourier's law is valid: 7z 7) = Ta exp (‘f) cos(wt - *) (7)
Jg = —X-gradT (1) with § = (2Dw/w)Y2 a characteristic length. E() character-

izes a highly damped periodic wave; at a penetration depth

of z=§ the original temperature amplitude is reduced by

1/e. Thisis a distance equal to the wavelength divided hy 2z
Another solution of the differential Eq4) for this one-

whereJ, the energy (heat) flux vectdr,the thermal conduc-
tivity tensor andT the temperature. For the one-dimensional
case and stationary conditions this vector equation simplifies

to dimensional case describes the time development of the tem-
6= —EAT @) perature in response on a pul3&(0,t) which att=0 has the
T Ax form of a Dirac delta function localized &t 0:

whereg is the heat flow rateg the cross section areAx the 2q 12 X2

length of the heat conducting path a8 = Tsample— Trurnace T(x, 1) = Q(I)T%(“”Dthf) exp <— 4Dtht> (8)

the temperature difference along this path. This equation is

the fundamental equation for classical calorimetry. The con- whereq is the density (per unit area) of the heat-pulse at the
struction principle of the calorimeters is done in such a way, surface. The function has the shape of a (half) Gaussian curve.
that this simple equation becomes valid. The heat flow rate It can be shown that the width of the temperature distribution
is proportional to the measured temperature difference with increases proportional to (R)/2.

the proportionality coefficienK the so-called “calibration For the two- and three-dimensional case, respectively, Eq.
factor” of this calorimeter: (8) changes somewhat:

— _1 2
¢ =—KAT (3) To(r, t) o (f) exp(—ur)tht) o

whereK is the apparent thermal conductance of the (one- 75(r 1) o (1)~3/2 exp (_%)
dimensional) heat flow pathway. The reciprocal quantity b
1/K =Ry is the (apparent) thermal resistance of the heat con- The curve at a certain tintés still Gaussian type but pointsin
ducting path. the direction of the radius vectorrather than inx direction,

As mentioned before the measured quantity to determinewhereas the decrease at a certain position becomes faster with
the heat flow rate in calorimeters is the temperature. There-increasing number of dimensions.
fore the knowledge of the temperature field in dependence  An exact solution of the partial differential E@) in three
on position and time is of great importance. An important dimensions for given boundary and initial conditions is gen-
equation in this context is the “heat conduction equation”:  erally not possible and another way to describe the heat trans-
9T , ' N port behavior of chip-calorimeters has to be found.
E = DT with Din = T (4)

pep 2.2. The one-dimensional heat flow path method

whereDy, is the thermal diffusivity the densityc, the spe-
cific heat capacity anti? the Laplace operator. Itis assumed, In the early time of calorimetry the calorimeters were
thatDy, does not depend on temperature or time, a simplifica- constructed in such a way that the heat flux pathway is lin-
tion which normally holds for practical purposes. This partial ear. Both plane and radial symmetric solutions were used in
differential equation describes the time dependent diffusion practice to get a one-dimensional or quasi one-dimensional
of the temperature (i.e. the change of the temperature field) inheat flow pathway. The famous pioneer Tian derived the fol-
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lowing equation which connects the measured temperature
differenceAT with the heat flow rate for this case:
AT(7) v dAT(z)

#0) = Cpb+ ) === 7 — =0

(10)

the heat capacityj = dT/dtthe heating rate ang= RnC, the
time constant of the temperature relaxation. This is a differ-
ential equation for the measuredr signal. From this equa-
tion follows thatAT is generallynot proportional to the heat
flow rate to/from the sample. Only in the case of stationar-
ity (where dAT/dt0) and in absence of thermal events in
the sample (¢=0), the proportionality holds and ELO)
simplifies to Eq(3). Fig. 1. Chip-calorimeter LCM-2506 from Xensor Integratiéi

However this equation describes a very simplified case,
both quantitieRn andC, are effective (apparent) quantities, series. This results in a linear differential equation of higher
they contain not only sample properties, but even contribu- order, the solution for a heat pulse (temperature step answer)
tions of the sample container, the support and the calorimetricis now a sum of exponential functions with different time
cell. To get the heat flow rate into the sample, which is the constants and different factors:
quantity of interest in calorimetry, a twin arrangement with (/) (/) (t/73)
two calorimeters, one for the sample and one for the refer- A7(1) = ko + k1€ +koe +kse o
ence is often used. The two identical calorimeters, with an (12)
identical but empty sample container on the reference side,
are placed together in one heating device (furnace). In theln practice, in the case of not too complex models with too

case of ideal symmetry the differential signal (ife.— ¢Rr) many parameters, the different parameters can again be de-
reproduces the heat flow into the sample, all other contribu- termined from suitable calibration experiments. One possi-
tions no longer apply this way. If we write down E¢.0) bility is to perform a pulse like thermal event and measure the

for the sample and the reference side separately and subtracgalorimeter response. With proper curve fitting algorithms it
both from one another, we get, after some simplifications an i in some cases possible to calculate the respective parame-
equation which looks similar to E¢10), but now with the  ters properly. _ . _ _

heat flow rate into the samp§g; — ¢r = psample(the quantity However, the one-dimensional method is an approxima-
of interest) on the left hand side and with another tempera- tion only. The advantage of a rather simple mathematical
ture difference, namel T = Tsample— Treference ON the right model is linked with the disadvantage of a rather massive
hand sideRy, and r are the same for both sides if perfect calorimeter cell to get a sample-independent calibration fac-
symmetry is assumed. Therefore Etp)can be used aswell ~ tor and a large thermal resistance for high sensitivity. As
to model all differential (scanning) calorimeters with a one- & result the response time (time constant) and the heat re-

dimensional heat flow pathway. laxation time (thermal lag) are large as well which makes
The solution of such a linear differential equation of 1st these common calorimeters unsuited to measure fast events
order for a heat pulse (or temperature step) event reads:  in small samples and thin films. For such purposes chip- or
IC-calorimeters have been developed with response times in
AT(t) = k1 exp(—f) (11) the millisecond region, but for these calorimeters the one-
T

dimensional approximation for the heat flow pathway is sel-

This is a relaxation equation; the measured temperaturedom sufficient to give precise results and improved models
difference drops exponentially towards zero, whereas the have to be applied.
original event is a heat pulse (temperature step). The
relaxation method allows determining the time constant 2.3. Network models
of the calorimeter easily from the temperature step answer
of the calorimeter. With that value, E¢L1) is known and A calorimeter is always a three-dimensional thing and the
it is possible to deconvolute the real heat flow rate function pathway of the energy from the heater to the sample is never
produced by the sample from the measured heat flow rateonly one-dimensional. In reality there is a whole network
function via Fourier transform and division in Fourier of pathways where the heat can flow from the hotter to the
space followed by inverse Fourier transfofin2]. It is also colder parts of the calorimeter. This is in particular true for
possible to introduce the measurad (t) function into Eq. chip-calorimeters like that shown Fig. 1. It is often possi-
(10) and calculate the sample heat flow rate this way. ble to divide the calorimetric setup into different parts of a

The model can be improved further by dividing the thermal certain (apparent) heat capacity which are connected together
path into several thermal resistances and heat capacities irwith thermal conductance of a certain (apparent) conductiv-
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ity. This results in a three-dimensional network of capacities substituted by (small) differences. This system of equations
(nodes) and thermal resistances (paths) which can serve as acan be evaluated recursively using the methods of numerical
approximation of the real setup. The finer the subdivision is matrix algebra. It is obvious, that this method is expensive
done the better is the approximation for the calorimeter. In the and needs some experiences to be successful. However, pow-
limit of infinite fine subdivision, the network reproduces the erful professional software is available which helps the user
reality exactly. This so-called finite elements method (FEM) with all details starting from automatic modeling of the finite
is, however, well known and often used in engineering to elements, up to calculation of the temperature and heat flow
calculate mechanical and thermal behavior of constructs offields, both for stationary and time dependent cases, for all
different kind but needs often a higher computing expense. thinkable initial and boundary conditions. This way it is eas-
The mathematical procedure of the FEM method starts ily possible to extract the heat flow rate into the sample, as
from the energy conservation law: for every node the changewell as at any position of the setup. Nowadays FEM software
of the stored energy equals the difference of incoming and runs easily on modern PCs but is, of course not cheap and
outgoing heat fluxes. There are contributions from exchangedthe user has to invest a lot of time to gain experiences. Fur-
heat, caused by temperature differences toward the neighbothermore the material properties (heat capacities and thermal
nodes, and from heat production or consumption caused byconductivities) must be known for every part of the equip-
reactions or transitions inside the node (latent heat). For everyment, it is not possible to determine such properties this way.
node a differential equation like E¢LO) can be formulated, = The only way is to compare the simulated results with the
which contains all exchanged, produced and stored heat flowmeasured ones and see whether these fit together.
rates, the heat capacity of the node and the temperature differ-
ences against all neighbor nodes together with the respective2.4. Linear response methods
thermal resistances. For a not too large number of nodes this
system of linear differential equations can be simplified and  The methods presented so far start from a known calori-
solved in a way to result in an equation which connects the metric setup with known properties and calculate the temper-
heat flow rate into the sample (or the sample heat capacity)ature and/or the heat fluxes at, say, sample position. Methods
with the measured temperatures or temperature differencesfounded on the theory of linear resporf2¢8] start from the
We shall present an example of such a network approxima- measured thermal response of the equipment with and with-
tion in the application section below. It should be mentioned out sample and calculate the heat flow rate into the sample
that some powerful computer algebra systems exist on the(and other quantities) from those functions.
market which can be very helpful to get reliable results. It  Within linear response theory any system is described as
is clear, that the mathematical solution of the system of dif- a box with an “input” and an “output”. The system reacts on
ferential equations becomes the more difficult the higher the a certain input (stimulus) with a certain output (response).
number of nodes and equations is. It is a good idea to restrictSpecial input functions are the step-function and the pulse-
the number of nodes to a minimum by clever modeling of function, the respective outputfunctions are the step-response
the essential parts of the calorimetric setup and by a decisionand the pulse-response, respectively. The step- and pulse-
in advance which thermal pathways are dominant and which functions can be transformed into one-another by differenti-
may be neglected. ation and integration, respectively. The same is true for the
Anyway, the solution got this way contains the heat capac- respective response functions.
ity of all nodes of the model as well as the thermal resistances  The Fourier-transformed pulse-respond function is called
of their connections. Some of these are known from material transfer function of the system; it plays an important role in
databases if the respective material is known, other are un-transfer theory. For linear systems it is known that the over-
known and have to be determined properly in adequate cali-all transfer function of a network can be calculated from the
bration experiments. The properties of the nodes belonging totransfer functions of the individual components. The overall
the calorimeter itself are, as a rule, fixed and do not change fortransfer function of components connected in series is the
different experiments, whereas the properties of the sampleproduct of the individual transfer functions. If the compo-
and its thermal connection to the calorimeter are, of course, nents are connected in parallel the total transfer function is
not constant but change from measurement to measurementhe sum of the transfer functions of the individual compo-
The method described so far is, however, an approxima- nents.
tion of the reality only. The result is therefore not exact and  For calorimeters the input function (stimulation) is often
careful error evaluation must be done to determine the un-the temperature as a function of time and the output func-
certainty of the respective calorimetric results. A more pro- tion (response) is the measured heat flow rate (more precise
fessional way to model the calorimetric setup takes care of a voltage proportional to it). As mentioned before this signal
the finite element method which divides the equipment into is generally not the heat flow rate into the sample, which is
a sufficient number of sufficient small pieces (nodes) con- the quantity of interest, but delayed in time and “smeared” in
nected in three dimensions. This results again in a systemthe case of thermal events inside the sample. To get the true
of differential equations, which in practice are approximated sample properties we take advantage of the transfer functions
by a system of linear equations, where the differentials are of the setup (both with and without sample). The respective
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transfer functions are gotten by producing a heat pulse (or disadvantages and no one can generally be recommended,
temperature step) inside the sample or on the sample site in thdoecause the respective chip-calorimeters and applications are
empty calorimeter and measuring the resulting heat flow rate too different. The scientist has to decide what method is most
response in time. Such pulses can be caused by Laser flashesuitable for the current purpose. We shall give an example in
or sudden crystallization of (heavily) supercooled pure sub- what follows which may serve as a guideline how to come
stances. Fourier transform yields the respective transfer func-to a suitable compromise between mathematical expense and
tions. What the heat flow concerns, the calorimeter and the precision of the model.
sample are connected in series and the respective functions
have to be multiplied to get the total transfer function. To get 3.2. Detailed example
the sample transfer function the total transfer function has to
be divided by the transfer function of the empty calorime- Details of the chip-calorimeter presented here have been
ter. Inverse Fourier transform of the result yields the pulse published beforgl1]. The basis of the calorimeter is the chip
response of the sample itself which allows calculation of LCM-2506 from Xensor Integratiof6] (Fig. 1). This chip
thermal properties as thermal resistance and apparent heatonsists of a thin silicone membrane in a thicker silicone rim.
capacity. In the middle of the membrane is a (one-dimensional) heater
If we know the transfer function of a calorimetric setup we between it and the rim a thermopile is integrated to measure
are able to calculate the true heat flow rate into the samplethe temperature difference between the sensitive center of the
from the measured one. The procedure is the same as bemembrane and the rim. An integrated diode temperature sen-
fore, the measured heat flow rate function has to be Fourier-sor allows measuring the temperature of the rim separately.
transformed, divided by the transfer function of the setup and Fig. 2 shows a schematic drawing of the left to right cross
re-transformed again. section through the chip. The silicone rim is glued into a ce-
ramic pin-grid array (PGA). In the real calorimeter the chip is
connected top down (with the heater bottom side of the mem-
brane) to a silver furnace which can be precisely temperature
3.1. Examples from literature controlled. The calorimeter can be driven (i) conventionally,
by heating the furnace linearly in time, (ii) isothermally, keep-
Some of the above mentioned methods have been used tang the furnace temperature constant and (iii) in pulse mode,
model conventional calorimeters and their heat transfer be-using the heater of the membrane to produce heat pulses or
havior, for details see ReRR]. The mostly used method was temperature steps. In every case the temperature difference
that, taking care of the one-dimensional heat flow pathway signal from the thermopile and the temperature of the rim are
and using a twin arrangement and measure the differentialmeasured as functions of time.
heat flow rate. This method has also been applied to a
chip-calorimeter by Allen and co-workef4]. For a single 3.2.1. The model
chip-calorimeter the (one-dimensional) relaxation method  The construction of this chip and the calorimetrical setup
was applied but in a somewhat modified form to include not is certainly not one-dimensional and not cylinder-symmetric
only heat conduction but even radiation heat exchdbpe either. Even the simplest possible model for this chip-
However, the one-dimensional approximation can gener- calorimeter contains several heat paths and nodes (Fig. 3).
ally not be used for common chip-calorimeters, because mostOne node (F) replaces the furnace and the ceramic frame,
chip-calorimeters, even those available on the mgik&f which are thermally connected. The temperature of the fur-
are originally not constructed for this purpose. The heater nacelgis controlled and therefore given, furthermore the heat
does, in many cases, not cover the whole area below the sameapacity (G) of this massive part is assumed to be infinite.
ple, and the chip, as well as the thermometer (thermocouples) One node (M) replaces the membrane with the heater and the
are not radial-symmetric constructed ($ég. 1). As a result hot junctions of the thermopile; it is thermally coupled to the
the RC-network is more complex and the one-dimensional rim (R) as well as to the furnace, the latter by convection and
method adds only up to a rather poor approximation of the radiation heattransfer. The rim, inturn, is glued and thus cou-
truth, nevertheless the one-dimensional approximation haspled to the chip frame. On top of the membrane the sample

3. Application examples

successfully been used in practice (see e.g. R&f3,17]). (S) is positioned, but it is coupled to the furnace too (again
Other authors used simple or more complex RC networks in via convection and radiation heat transfer). The diffef&qt
two or three dimensions to model chip-calorime{é-13]. characterize the apparent thermal resistances of the five dif-

In the case of more complex models they solved the system offerent pathways where the heat can flow. Theharacterize
equations with computer algebra syst¢iry. Eventhe more  the apparent heat capacities of the respective nodes.
expensive FEM method has successfully been used to model The system of equations, describing the thermal behavior
chip-calorimeterg14]. Also method of linear response was of this simplest possible network model, is obtained from
applied, both for simple and more detailed models, in partic- the physical condition, that for every node the sum of all
ular when temperature-modulated or pulse techniques werethermal fluxes must be zero (conservation of energy) and
used[10,15,16]. All methods used have both advantages andthat for every loop the sum of temperature differences must
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glue membrance thermopile.
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Fig. 2. Cross section scheme of the LCM-2506 chip accordiri]to

be zero too. Therefore the following set of equations can be 3.2.2. The chip-calorimeter without sample

established using Fourier’s law (in the one-dimensional form  TheRy andC; of the nodes belonging to the chip itself can

of Eq.(2)): be determined in experiments without sample. In this case the
right hand node in the model (Fig. 3) can be dropped and the

div Tv—-Tr Tmw—-Ts Tw—TF set of Eq.(13) for the empty chip-calorimeter simplifies:

M—— — = ¢heater
dt Rrm Rwms Rem div Tw—-TR Tv—T¢
dir TrR—Tr Tr—Tm CM—— — - = Pheatek!)
CRT i i =0 (13) dr Rrm REm
t FR RM dir Tr—Tr Tr—Twm (14)
dTs dCs(r) Ts— T Ts—Tw CR—— — - =0
Cs(t)— +Ts — — =0 dr Rrr Rrm
dr dr Rrs Rms T —T
Te(t) = To + ot F(0) = To+ for
_ N . _ This system can be solved for the initial condition of con-
and in addition the trivial relations: stant and equal temperatufg = Tr = Tr = 0 and a step-like
heater power functiopneateft) and yield a function of the
(Tm — Tr) = (Tm — TrR) + (TR — TF) following form for the measured signal:
= (Tm — Ts) + (Ts — T¥) AT(t) = Tu(t) — TR(t) = k1 €% + kge™ ™ + ks (15)

where the five constantg to ks are rather complex linear
algebraic combinations of the five paramet®&gy, Rrm,

Rrr, Cv andCr. The number can be reduced if we assume
that the rim is thermally very well connected to the PGA (fur-
nace), thelRer becomes almost zero a@ nearly infinite.

The other parameters can be estimated from known material

which hold for the respective time derivatives as well.

The equation systefi3)links the given quantitie$neater
andTg with the unknown (apparent) heat capacity of the sam-
pleCsg(t), the temperaturéBy, Tr andTs. Inthe present form
there are only three equations for four variables and in ad-

dition seven originally unknown parametdtg andG;, the properties of the chip and laws of conduction and radiation
problem cannot be solved without further simplifications or heat transfer. For example we calculaled] the membrane

additional conditions. One possibily is to measure the SIgnal roitanceRey = 131.(T/300§2K W and that of the ai
ot the Inermopiie and INtroduc 1 = Im — 1R INTO N SYS= 506 apove and below the membramey =9.2x 10°
tem as a known quantity. Now the system of equations can, (5.35+0.07T)1 KWL, For, say, a temperature of 70

in principle, be solved for, say, the apparent heat capacity of . . _ 1
the sampleCs(t) in dependence of the given furnace tem- (343K) this results in values oRgm=160KW™ and

peratureTg(t), heater powedneatet) @and thermopile signal
AT(t), if the values of the other parameters can be determined
somehow.

The system is, of course still rather complex and a solution
not easy to get, so it is a good idea to try to simplify the
system and estimate the magnitude of the parameters. In a
first step the thermal resistanBer between the rim and the
PGA was considerably reduced using a special glue with high
thermal conductivity (containing silver powder) instead of the
originally epoxy glue. As a resuRer becomes very low and
(Tr — Tg) can be neglected AR =T =Tp + Bt. The system
of equations can now be simplified, but the parameters arefig. 3. Network model of the chip-calorimeter with four nodes and five heat
still unknown. conducting paths.
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0.75 T Fig. 5. Simplified network model of the chip-calorimeter with three nodes
. r Tt and three thermal paths.
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tis
connected with the furnace could be confirm@gdis 3 orders

Fig. 4. Measured and simulated step response function of the calorimeter of magnitude Iarger tha@); and the resistand&-g is much
without sample (the difference is smaller than the width of the line, both | .
ower than the other resistances.

curves are almost one on top of the other).

3.2.3. The chip-calorimeter with sample (a simplified

Rem = 3200 K WL, The additional heat exchange via radi- model) . N .
ation from the membrane to the surrounding furnace can be _. These f|qd|ngs gnable to sw_nphfy the madel as shown in
estimated to a value of T8 W for a temperature difference F|_g. 5:the rim (R) is now considered as part .Of the furnace
of 0.8 K. This will not change the above calculated effective with Tr =Tr, furthermore the two parallel resistandegy

thermal resistance between the membrane and the furnacémd R':_'V' can _b_e considered as one apparent FESiSW
very much and can therefore be neglect@gl.on the other 0" this modified model the system of H3.3) simplify to

hand can be approximated to a value of aboutB 5 J K1 the following system describing the heat flow rate balance of
These numbers are, of course, only rough appro;dma— the nodes M and S and the temperature of the furnace F:

tions of the truth. To get more precise values, tempera- div Tm—Ts Tm —Tr

ture steps are performed by switching an electrical power “M~§,” Rms Rewv Pheatel!)

of 0.005W to the heater and measure the resuliiiyt) B B 16

function. The parameteilg of Eq. (15) are fitted to match CS(I)% + TSdC;ist(t) — TSR T _ TSR T =0 (16)
FS MS

the measured function (s€&ég. 4) using suitable evaluation Te(t) = To + fot
software (in our case Origin) and realistic starting values F 0 0
of the k; (which are calculated using the above mentioned which connects the apparent heat capacity of the sam-
equations connecting thie with the Rx and C;) and the ple Cg(t) with the heater power and the measured ther-
above estimated values at 0. The resulting best fit de-  mopile signalAT=Ty — Tr. Some of the parameters are
termined the fivek; of Eq. (15). With these values the al- already determined, from the step response experiments
gebraic system of equations connecting the model param-with the empty calorimeter. Assuming a thin sample on top
eters was solved numerically using the Macsyma software of the membrane, the resistanBes (concerning the con-
and a weighted parameter variation procedure. This needsvection and radiation) of this model should be about the
a lot of trial and error (the different parameters influence same asRpy of the empty calorimeter (2430 KW) and
the measured pulse response function in different manner)Rey = (1/164 + 1/2430)1 =154 KWL, These and the re-
before some experience is gained. However, the fit pro- maining unknown parameteRs (together with the time
cedure resulted in the following parameter values for the independenCs) can be determined precisely with the same
empty chip at 70C: Rry = 164 KWL, Ry = 2430 K W1, method again, but now using the model including the sample.
Rer=12KW-1, Cy =0.00019 JK1 andCr=0.145JK 1.
These values are somewhat temperature dependent, but aB.2.4. The time independent solution
most fixed for the respective chip. If we assume that we perform the heater power steps in re-
With the step response method and the named proceduragions where no reactions and transitions occur in the sample,
such values can be determined for every other temperature a&s can be considered as constant within the time of such a step
well, also during linear heating of the furnace. The fitfunction experiment and dg/dtcan be neglected. For this special case
reproduces the measurAd (t) function sufficiently well (see  the equation systelfi6) looks like the systen(l4) but with
Fig. 4) and the above simple model can therefore be used todifferent parameters. Therefore the solution for isothermal
describe our empty chip-calorimeter properly. Furthermore conditions has the form of E¢L5) again and the parameters
the above mentioned assumptions that the rim is very well can be determined in the same way as before and yield again
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g the form is often that of an integral equation with terms of
exponential time behavior.

. 4. Conclusions

It has been shown that several methods exist and have suc-
cessfully been used to describe the thermal behavior of the
0.60— micro- or nano-calorimeters constructed on chip or IC basis.
With these methods it is also possible to calculate the heat
1 capacity of the sample from the measured signal. This is also

0.5~ possible during thermal events producing latent heat in the
0.00 2.00 4.00 6.00 sample and causing a so-called excess heat capacity and thus
tis a time-dependent apparent heat capacity curve. The pulse-
or step-response method has proved to be a powerful tool
Fig. 6. Measured and simulated step response function of the calorimeterto determine the model parameters by fitting the expected
containing a sample of 0.52mg PCL on a 0.5 mg Al-foil (the difference is function to the measured step (or pulse) response function.
smaller than the width of the line, both curves are almost one on top of the A modern computer technique together with powerful soft-
other). ware allows solving also rather complex problems (equation
systems) without larger difficulties. This enables to construct
a sufficient nice fit (se€ig. 6). As a result we got the fol-  very small and sensitive calorimeters with time constants in
lowing values for a sample of 0.5mg of poly-caprolactone the millisecond region and determine thermal properties even
(PCL) (in a thin Al-foil to avoid contamination of  of thin films without the need of a differential measurement
the chip-calorimeterRrs=1150 KW, Rey = 163K W1, with twin calorimeters like in conventional DSC.
Rus=310KW1 andCy =0.00019 JK1. From the mea-
suredCs=0.00122 JK 1 the specific heat capacity of the
PCL sample can be calculated (if we take the heat ca- References
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