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About models and methods to describe chip-calorimeters and
determine sample properties from the measured signal
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Abstract

Different models used to describe chip-calorimeters and to simulate their thermal behavior are presented together with the physical basics
of heat transfer. Different methods to deconvolute the measured signals are explained. One model example for a certain chip-calorimeter is
given in more detail to show the procedure.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

During the last years so-called chip- or IC-calorimeters
ave more and more been used to measure caloric and other

hermal properties of small samples. They are even suitable
o measure the respective properties of thin films. The advan-
ages of these very small calorimeters are the small size, a
ow thermal inertia, a rather small time constant and a high
ensitivity. However, the theory of such calorimeters and the
athematics for the deconvolution of the sample properties

rom the measurements is much more complicated than for
ommon calorimeters. The pathway of the heat flow cannot
e approximated by a one-dimensional model and the heat
apacity of the sample is often in the same order of magni-
ude as the heat capacity of the calorimeter “cell”, which in
any chips consists only of a very thin silica membrane. In

lassical calorimeters the “cell” is much larger in mass and
eat capacity than the sample. This is done to avoid an influ-
nce of the sample on the sensitivity of the calorimeter and

ree the calibration factor from sample properties.
At those times, when the classical calorimeters were built,

o computers existed and all evaluation was done by hand.

ods to calculate the quantities of interest from the meas
curves. The construction of the calorimeters was such to
a signal strictly proportional to the heat flow rate into
sample itself with a “calibration factor” almost not infl
enced by the heat transfer to the sample and its heat cap
The price to be paid for this comfort was a rather low s
sitivity of the calorimeter, with a need of large samples,
large time constants in the range from some seconds
many minutes in the case of very sensitive “micro calori
ters”.

Nowadays PCs in laptop size are available for every
with a computing power comparable to mainframe com
ers filling a large room in the seventies. With this hardw
and modern computer algebra systems it became possib
everyone to solve even complicated differential equation
tems and calculate the quantities of interest. It is possib
calculate the heat flow rate into the sample in depend
of the sample temperature “online” during the measurem
proceeds. Such techniques enable the scientist to con
very sensitive, small calorimeters with low time consta
in the millisecond region and get reliable results even
very small samples and fast processes. This opens the
herefore there was a need for simple formulas and meth-
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to caloric properties as well as to thermodynamics of thin
films.

The aim of this review article is to give a detailed overview
over suitable methods used in practice and explain the line
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of proceeding on the basis of commercially available chip-
calorimeters. In the last chapter one possible way to model
a commercial chip-calorimeter is presented as an example.
This is, of course, not the only way to model such calorime-
ters, it may, however, serve as a guideline for other setups as
well as an example for the power and success of this type of
modeling.

2. Models and methods

2.1. Physical basics

Heat and heat flow rates are determined in most of the
calorimeters by measuring temperatures or temperature dif-
ferences. Heat needs temperature gradients to flow. For the
transport of energy in form of heat Fourier’s law is valid:

Jq = −λ · gradT (1)

whereJq the energy (heat) flux vector,λ the thermal conduc-
tivity tensor andT the temperature. For the one-dimensional
case and stationary conditions this vector equation simplifies
to

φ = − λa

�x
�T (2)
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a uniform condensed medium via energy transport. A wave-
like solution of the differential equation has the form:

T = T0 exp[i(k · r − ωt)] (5)

with ω is the angular frequency,k the wave vector andr the
radius vector. Eq.(5) is a solution of the differential Eq.(4)
if Dthk2 = iω, this describes the so-called dispersion relation
for that case.

In the one-dimensional semi-infinite case when the tem-
perature atz= 0 is varied periodically with time like

T (0, t) = TA cosωt (6)

the solution reads (for details see textbooks of thermal
physics):

T (z, t) = TA exp
(
−z

δ

)
cos

(
ωt − z

δ

)
(7)

with δ = (2Dth/ω)1/2 a characteristic length. Eq.(7) character-
izes a highly damped periodic wave; at a penetration depth
of z= δ the original temperature amplitudeTA is reduced by
1/e. This is a distance equal to the wavelength divided by 2π.

Another solution of the differential Eq.(4) for this one-
dimensional case describes the time development of the tem-
perature in response on a pulseQδ(0,t) which att= 0 has the
form of a Dirac delta function localized atx= 0:
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hereφ is the heat flow rate,a the cross section area,�x the
ength of the heat conducting path and�T=Tsample−Tfurnace
he temperature difference along this path. This equati
he fundamental equation for classical calorimetry. The
truction principle of the calorimeters is done in such a w
hat this simple equation becomes valid. The heat flow
s proportional to the measured temperature difference
he proportionality coefficientK the so-called “calibratio
actor” of this calorimeter:

= −K �T (3)

hereK is the apparent thermal conductance of the (
imensional) heat flow pathway. The reciprocal quan
/K=Rth is the (apparent) thermal resistance of the heat
ucting path.

As mentioned before the measured quantity to deter
he heat flow rate in calorimeters is the temperature. Th
ore the knowledge of the temperature field in depend
n position and time is of great importance. An impor
quation in this context is the “heat conduction equation

∂T

∂t
= Dth∇2T with Dth = λ

ρcp

(4)

hereDth is the thermal diffusivity,ρ the density,cp the spe
ific heat capacity and∇2 the Laplace operator. It is assum
hatDth does not depend on temperature or time, a simpli
ion which normally holds for practical purposes. This pa
ifferential equation describes the time dependent diffu
f the temperature (i.e. the change of the temperature fie
(x, t) = θ(t)
2q

ρcp

(4πDtht)
−1/2 exp

(
− x2

4Dtht

)
(8)

hereq is the density (per unit area) of the heat-pulse a
urface. The function has the shape of a (half) Gaussian c
t can be shown that the width of the temperature distribu
ncreases proportional to (Dtht)1/2.

For the two- and three-dimensional case, respectively
8) changes somewhat:

T2(r, t ) ∝ (t)−1 exp
(
− r2

4Dtht

)

T3(r, t ) ∝ (t)−3/2 exp
(
− r2

4Dtht

) (9)

he curve at a certain timet is still Gaussian type but points
he direction of the radius vectorr rather than inx direction,
hereas the decrease at a certain position becomes fast

ncreasing number of dimensions.
An exact solution of the partial differential Eq.(4) in three

imensions for given boundary and initial conditions is g
rally not possible and another way to describe the heat
ort behavior of chip-calorimeters has to be found.

.2. The one-dimensional heat flow path method

In the early time of calorimetry the calorimeters w
onstructed in such a way that the heat flux pathway is
ar. Both plane and radial symmetric solutions were us
ractice to get a one-dimensional or quasi one-dimens
eat flow pathway. The famous pioneer Tian derived the
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lowing equation which connects the measured temperature
difference�Twith the heat flow rateφ for this case:

φ(t) = Cpβ + φr(t) = −�T (t)

Rth
− τ

Rth

d�T(t)

dt
(10)

whereφr is the heat flow rate of any reaction in the sample,Cp
the heat capacity,β = dT/dt the heating rate and� =RthCp the
time constant of the temperature relaxation. This is a differ-
ential equation for the measured�T signal. From this equa-
tion follows that�T is generallynotproportional to the heat
flow rate to/from the sample. Only in the case of stationar-
ity (where d�T/dt= 0) and in absence of thermal events in
the sample (φr = 0), the proportionality holds and Eq.(10)
simplifies to Eq.(3).

However this equation describes a very simplified case,
both quantitiesRth andCp are effective (apparent) quantities,
they contain not only sample properties, but even contribu-
tions of the sample container, the support and the calorimetric
cell. To get the heat flow rate into the sample, which is the
quantity of interest in calorimetry, a twin arrangement with
two calorimeters, one for the sample and one for the refer-
ence is often used. The two identical calorimeters, with an
identical but empty sample container on the reference side,
are placed together in one heating device (furnace). In the
case of ideal symmetry the differential signal (i.e.φS− φR)
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Fig. 1. Chip-calorimeter LCM-2506 from Xensor Integration[6].

series. This results in a linear differential equation of higher
order, the solution for a heat pulse (temperature step answer)
is now a sum of exponential functions with different time
constants and different factors:

�T (t) = k0 + k1 e−(t/τ1) + k2 e−(t/τ2) + k3 e−(t/τ3) + · · ·
(12)

In practice, in the case of not too complex models with too
many parameters, the different parameters can again be de-
termined from suitable calibration experiments. One possi-
bility is to perform a pulse like thermal event and measure the
calorimeter response. With proper curve fitting algorithms it
is in some cases possible to calculate the respective parame-
ters properly.

However, the one-dimensional method is an approxima-
tion only. The advantage of a rather simple mathematical
model is linked with the disadvantage of a rather massive
calorimeter cell to get a sample-independent calibration fac-
tor and a large thermal resistance for high sensitivity. As
a result the response time (time constant) and the heat re-
laxation time (thermal lag) are large as well which makes
these common calorimeters unsuited to measure fast events
in small samples and thin films. For such purposes chip- or
IC-calorimeters have been developed with response times in
the millisecond region, but for these calorimeters the one-
d sel-
d dels
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eproduces the heat flow into the sample, all other cont
ions no longer apply this way. If we write down Eq.(10)
or the sample and the reference side separately and su
oth from one another, we get, after some simplification
quation which looks similar to Eq.(10), but now with the
eat flow rate into the sampleφS− φR =φsample(the quantity
f interest) on the left hand side and with another temp

ure difference, namely�T=Tsample−Treference, on the righ
and side.Rth andτ are the same for both sides if perf
ymmetry is assumed. Therefore Eq.(10)can be used as we
o model all differential (scanning) calorimeters with a o
imensional heat flow pathway.

The solution of such a linear differential equation of
rder for a heat pulse (or temperature step) event reads

T (t) = k1 exp
(
− t

τ

)
(11)

his is a relaxation equation; the measured temper
ifference drops exponentially towards zero, whereas
riginal event is a heat pulse (temperature step).
elaxation method allows determining the time constaτ
f the calorimeter easily from the temperature step an
f the calorimeter. With that value, Eq.(11) is known and

t is possible to deconvolute the real heat flow rate func
roduced by the sample from the measured heat flow

unction via Fourier transform and division in Four
pace followed by inverse Fourier transform[1,2]. It is also
ossible to introduce the measured�T(t) function into Eq
10)and calculate the sample heat flow rate this way.

The model can be improved further by dividing the ther
ath into several thermal resistances and heat capacit
imensional approximation for the heat flow pathway is
om sufficient to give precise results and improved mo
ave to be applied.

.3. Network models

A calorimeter is always a three-dimensional thing and
athway of the energy from the heater to the sample is n
nly one-dimensional. In reality there is a whole netw
f pathways where the heat can flow from the hotter to
older parts of the calorimeter. This is in particular true
hip-calorimeters like that shown inFig. 1. It is often poss
le to divide the calorimetric setup into different parts o
ertain (apparent) heat capacity which are connected tog
ith thermal conductance of a certain (apparent) condu
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ity. This results in a three-dimensional network of capacities
(nodes) and thermal resistances (paths) which can serve as an
approximation of the real setup. The finer the subdivision is
done the better is the approximation for the calorimeter. In the
limit of infinite fine subdivision, the network reproduces the
reality exactly. This so-called finite elements method (FEM)
is, however, well known and often used in engineering to
calculate mechanical and thermal behavior of constructs of
different kind but needs often a higher computing expense.

The mathematical procedure of the FEM method starts
from the energy conservation law: for every node the change
of the stored energy equals the difference of incoming and
outgoing heat fluxes. There are contributions from exchanged
heat, caused by temperature differences toward the neighbor
nodes, and from heat production or consumption caused by
reactions or transitions inside the node (latent heat). For every
node a differential equation like Eq.(10) can be formulated,
which contains all exchanged, produced and stored heat flow
rates, the heat capacity of the node and the temperature differ-
ences against all neighbor nodes together with the respective
thermal resistances. For a not too large number of nodes this
system of linear differential equations can be simplified and
solved in a way to result in an equation which connects the
heat flow rate into the sample (or the sample heat capacity)
with the measured temperatures or temperature differences.
We shall present an example of such a network approxima-
t ned
t n the
m s. It
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substituted by (small) differences. This system of equations
can be evaluated recursively using the methods of numerical
matrix algebra. It is obvious, that this method is expensive
and needs some experiences to be successful. However, pow-
erful professional software is available which helps the user
with all details starting from automatic modeling of the finite
elements, up to calculation of the temperature and heat flow
fields, both for stationary and time dependent cases, for all
thinkable initial and boundary conditions. This way it is eas-
ily possible to extract the heat flow rate into the sample, as
well as at any position of the setup. Nowadays FEM software
runs easily on modern PCs but is, of course not cheap and
the user has to invest a lot of time to gain experiences. Fur-
thermore the material properties (heat capacities and thermal
conductivities) must be known for every part of the equip-
ment, it is not possible to determine such properties this way.
The only way is to compare the simulated results with the
measured ones and see whether these fit together.

2.4. Linear response methods

The methods presented so far start from a known calori-
metric setup with known properties and calculate the temper-
ature and/or the heat fluxes at, say, sample position. Methods
founded on the theory of linear response[2,3] start from the
measured thermal response of the equipment with and with-
o mple
(
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ion in the application section below. It should be mentio
hat some powerful computer algebra systems exist o
arket which can be very helpful to get reliable result

s clear, that the mathematical solution of the system of
erential equations becomes the more difficult the highe
umber of nodes and equations is. It is a good idea to re

he number of nodes to a minimum by clever modelin
he essential parts of the calorimetric setup and by a dec
n advance which thermal pathways are dominant and w

ay be neglected.
Anyway, the solution got this way contains the heat ca

ty of all nodes of the model as well as the thermal resista
f their connections. Some of these are known from mat
atabases if the respective material is known, other ar
nown and have to be determined properly in adequate
ration experiments. The properties of the nodes belong

he calorimeter itself are, as a rule, fixed and do not chang
ifferent experiments, whereas the properties of the sa
nd its thermal connection to the calorimeter are, of co
ot constant but change from measurement to measure

The method described so far is, however, an approx
ion of the reality only. The result is therefore not exact
areful error evaluation must be done to determine the
ertainty of the respective calorimetric results. A more
essional way to model the calorimetric setup takes ca
he finite element method which divides the equipment

sufficient number of sufficient small pieces (nodes)
ected in three dimensions. This results again in a sy
f differential equations, which in practice are approxima
y a system of linear equations, where the differentials
.

ut sample and calculate the heat flow rate into the sa
and other quantities) from those functions.

Within linear response theory any system is describe
box with an “input” and an “output”. The system reacts
certain input (stimulus) with a certain output (respon
pecial input functions are the step-function and the p

unction, the respective output functions are the step-resp
nd the pulse-response, respectively. The step- and

unctions can be transformed into one-another by differ
tion and integration, respectively. The same is true fo
espective response functions.

The Fourier-transformed pulse-respond function is ca
ransfer function of the system; it plays an important rol
ransfer theory. For linear systems it is known that the o
ll transfer function of a network can be calculated from

ransfer functions of the individual components. The ove
ransfer function of components connected in series i
roduct of the individual transfer functions. If the com
ents are connected in parallel the total transfer functi

he sum of the transfer functions of the individual com
ents.

For calorimeters the input function (stimulation) is of
he temperature as a function of time and the output f
ion (response) is the measured heat flow rate (more pr
voltage proportional to it). As mentioned before this sig

s generally not the heat flow rate into the sample, whic
he quantity of interest, but delayed in time and “smeare
he case of thermal events inside the sample. To get th
ample properties we take advantage of the transfer func
f the setup (both with and without sample). The respe
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transfer functions are gotten by producing a heat pulse (or
temperature step) inside the sample or on the sample site in the
empty calorimeter and measuring the resulting heat flow rate
response in time. Such pulses can be caused by Laser flashes
or sudden crystallization of (heavily) supercooled pure sub-
stances. Fourier transform yields the respective transfer func-
tions. What the heat flow concerns, the calorimeter and the
sample are connected in series and the respective functions
have to be multiplied to get the total transfer function. To get
the sample transfer function the total transfer function has to
be divided by the transfer function of the empty calorime-
ter. Inverse Fourier transform of the result yields the pulse
response of the sample itself which allows calculation of
thermal properties as thermal resistance and apparent heat
capacity.

If we know the transfer function of a calorimetric setup we
are able to calculate the true heat flow rate into the sample
from the measured one. The procedure is the same as be-
fore, the measured heat flow rate function has to be Fourier-
transformed, divided by the transfer function of the setup and
re-transformed again.

3. Application examples

3.1. Examples from literature
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disadvantages and no one can generally be recommended,
because the respective chip-calorimeters and applications are
too different. The scientist has to decide what method is most
suitable for the current purpose. We shall give an example in
what follows which may serve as a guideline how to come
to a suitable compromise between mathematical expense and
precision of the model.

3.2. Detailed example

Details of the chip-calorimeter presented here have been
published before[11]. The basis of the calorimeter is the chip
LCM-2506 from Xensor Integration[6] (Fig. 1). This chip
consists of a thin silicone membrane in a thicker silicone rim.
In the middle of the membrane is a (one-dimensional) heater
between it and the rim a thermopile is integrated to measure
the temperature difference between the sensitive center of the
membrane and the rim. An integrated diode temperature sen-
sor allows measuring the temperature of the rim separately.
Fig. 2 shows a schematic drawing of the left to right cross
section through the chip. The silicone rim is glued into a ce-
ramic pin-grid array (PGA). In the real calorimeter the chip is
connected top down (with the heater bottom side of the mem-
brane) to a silver furnace which can be precisely temperature
controlled. The calorimeter can be driven (i) conventionally,
by heating the furnace linearly in time, (ii) isothermally, keep-
i ode,
u es or
t rence
s are
m
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Some of the above mentioned methods have been u
odel conventional calorimeters and their heat transfe
avior, for details see Ref.[2]. The mostly used method w

hat, taking care of the one-dimensional heat flow path
nd using a twin arrangement and measure the differe
eat flow rate. This method has also been applied
hip-calorimeter by Allen and co-workers[4]. For a single
hip-calorimeter the (one-dimensional) relaxation me
as applied but in a somewhat modified form to include
nly heat conduction but even radiation heat exchange[5].

However, the one-dimensional approximation can ge
lly not be used for common chip-calorimeters, because
hip-calorimeters, even those available on the market[6,7]
re originally not constructed for this purpose. The he
oes, in many cases, not cover the whole area below the
le, and the chip, as well as the thermometer (thermocou
re not radial-symmetric constructed (seeFig. 1). As a resu

he RC-network is more complex and the one-dimensi
ethod adds only up to a rather poor approximation o

ruth, nevertheless the one-dimensional approximation
uccessfully been used in practice (see e.g. Refs.[8,9,17]).
ther authors used simple or more complex RC networ

wo or three dimensions to model chip-calorimeters[10–13].
n the case of more complex models they solved the syste
quations with computer algebra systems[12]. Even the mor
xpensive FEM method has successfully been used to m
hip-calorimeters[14]. Also method of linear response w
pplied, both for simple and more detailed models, in pa
lar when temperature-modulated or pulse techniques
sed[10,15,16]. All methods used have both advantages
ng the furnace temperature constant and (iii) in pulse m
sing the heater of the membrane to produce heat puls

emperature steps. In every case the temperature diffe
ignal from the thermopile and the temperature of the rim
easured as functions of time.

.2.1. The model
The construction of this chip and the calorimetrical se

s certainly not one-dimensional and not cylinder-symme
ither. Even the simplest possible model for this c
alorimeter contains several heat paths and nodes (Fi
ne node (F) replaces the furnace and the ceramic fr
hich are thermally connected. The temperature of the
aceTF is controlled and therefore given, furthermore the
apacity (CF) of this massive part is assumed to be infin
ne node (M) replaces the membrane with the heater an
ot junctions of the thermopile; it is thermally coupled to
im (R) as well as to the furnace, the latter by convection
adiation heat transfer. The rim, in turn, is glued and thus
led to the chip frame. On top of the membrane the sa
S) is positioned, but it is coupled to the furnace too (a
ia convection and radiation heat transfer). The differenRik
haracterize the apparent thermal resistances of the fiv
erent pathways where the heat can flow. TheCi characteriz
he apparent heat capacities of the respective nodes.

The system of equations, describing the thermal beh
f this simplest possible network model, is obtained f

he physical condition, that for every node the sum o
hermal fluxes must be zero (conservation of energy)
hat for every loop the sum of temperature differences m
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Fig. 2. Cross section scheme of the LCM-2506 chip according to[6].

be zero too. Therefore the following set of equations can be
established using Fourier’s law (in the one-dimensional form
of Eq.(2)):

CM
dTM

dt
− TM − TR

RRM
− TM − TS

RMS
− TM − TF

RFM
= φheater

CR
dTR

dt
− TR − TF

RFR
− TR − TM

RRM
= 0

CS(t)
dTS

dt
+ TS

dCS(t)

dt
− TS − TF

RFS
− TS − TM

RMS
= 0

TF(t) = T0 + β0t

(13)

and in addition the trivial relations:

(TM − TF) = (TM − TR) + (TR − TF)

= (TM − TS) + (TS − TF)

which hold for the respective time derivatives as well.
The equation system(13)links the given quantitiesφheater

andTF with the unknown (apparent) heat capacity of the sam-
pleCS(t), the temperaturesTM,TR andTS. In the present form
there are only three equations for four variables and in ad-
dition seven originally unknown parametersRik andCi , the
problem cannot be solved without further simplifications or
additional conditions. One possibility is to measure the signal
o -
t can,
i ity of
t m-
p l
� ined
s

tion
n the
s . In a
fi e
P high
t the
o d
(
o s are
s

3.2.2. The chip-calorimeter without sample
TheRik andCi of the nodes belonging to the chip itself can

be determined in experiments without sample. In this case the
right hand node in the model (Fig. 3) can be dropped and the
set of Eq.(13) for the empty chip-calorimeter simplifies:

CM
dTM

dt
− TM − TR

RRM
− TM − TF

RFM
= φheater(t)

CR
dTR

dt
− TR − TF

RFR
− TR − TM

RRM
= 0

TF(t) = T0 + β0t

(14)

This system can be solved for the initial condition of con-
stant and equal temperaturesTM =TR =TF = 0 and a step-like
heater power functionφheater(t) and yield a function of the
following form for the measured signal:

�T (t) = TM(t) − TR(t) = k1 e−k2t + k3 e−k4t + k5 (15)

where the five constantsk1 to k5 are rather complex linear
algebraic combinations of the five parametersRRM, RFM,
RFR, CM andCR. The number can be reduced if we assume
that the rim is thermally very well connected to the PGA (fur-
nace), thenRFR becomes almost zero andCR nearly infinite.
The other parameters can be estimated from known material
properties of the chip and laws of conduction and radiation
heat transfer. For example we calculated[11] the membrane
r ir
l
(
(

F heat
c

f the thermopile and introduce�T=TM −TR into the sys
em as a known quantity. Now the system of equations
n principle, be solved for, say, the apparent heat capac
he sampleCS(t) in dependence of the given furnace te
eratureTF(t), heater powerφheater(t) and thermopile signa
T(t), if the values of the other parameters can be determ

omehow.
The system is, of course still rather complex and a solu

ot easy to get, so it is a good idea to try to simplify
ystem and estimate the magnitude of the parameters
rst step the thermal resistanceRFR between the rim and th
GA was considerably reduced using a special glue with

hermal conductivity (containing silver powder) instead of
riginally epoxy glue. As a resultRFR becomes very low an
TR −TF) can be neglected orTR =TF =T0 +βt. The system
f equations can now be simplified, but the parameter
till unknown.
esistanceRRM = 131 (T/300)4/3 K W−1 and that of the a
ayer above and below the membraneRFM = 9.2× 104

5.35 + 0.07T)−1 K W−1. For, say, a temperature of 70◦C
343 K) this results in values ofRRM = 160 K W−1 and

ig. 3. Network model of the chip-calorimeter with four nodes and five
onducting paths.
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Fig. 4. Measured and simulated step response function of the calorimeter
without sample (the difference is smaller than the width of the line, both
curves are almost one on top of the other).

RFM = 3200 K W−1. The additional heat exchange via radi-
ation from the membrane to the surrounding furnace can be
estimated to a value of 10−5 W for a temperature difference
of 0.8 K. This will not change the above calculated effective
thermal resistance between the membrane and the furnace
very much and can therefore be neglected.CM on the other
hand can be approximated to a value of about 5× 10−5 J K−1.

These numbers are, of course, only rough approxima-
tions of the truth. To get more precise values, tempera-
ture steps are performed by switching an electrical power
of 0.005 W to the heater and measure the resulting�T(t)
function. The parameterski of Eq. (15) are fitted to match
the measured function (seeFig. 4) using suitable evaluation
software (in our case Origin) and realistic starting values
of the ki (which are calculated using the above mentioned
equations connecting theki with the Rik andCi) and the
above estimated values at 70◦C. The resulting best fit de-
termined the fiveki of Eq. (15). With these values the al-
gebraic system of equations connecting the model param-
eters was solved numerically using the Macsyma software
and a weighted parameter variation procedure. This needs
a lot of trial and error (the different parameters influence
the measured pulse response function in different manner)
before some experience is gained. However, the fit pro-
cedure resulted in the following parameter values for the
e ◦ −1 −1

R
T but al
m

edure
s ure as
w tion
r e
F ed to
d ore
t well

Fig. 5. Simplified network model of the chip-calorimeter with three nodes
and three thermal paths.

connected with the furnace could be confirmed:CR is 3 orders
of magnitude larger thanCM and the resistanceRFR is much
lower than the other resistances.

3.2.3. The chip-calorimeter with sample (a simplified
model)

These findings enable to simplify the model as shown in
Fig. 5: the rim (R) is now considered as part of the furnace
with TR =TF, furthermore the two parallel resistancesRRM
andRFM can be considered as one apparent resistanceR̄FM.
For this modified model the system of Eq.(13) simplify to
the following system describing the heat flow rate balance of
the nodes M and S and the temperature of the furnace F:

CM
dTM

dt
− TM − TS

RMS
− TM − TF

R̄FM
= φheater(t)

CS(t)
dTS

dt
+ TS

dCS(t)

dt
− TS − TF

RFS
− TS − TM

RMS
= 0

TF(t) = T0 + β0t

(16)

which connects the apparent heat capacity of the sam-
ple CS(t) with the heater power and the measured ther-
mopile signal�T=TM −TR. Some of the parameters are
already determined, from the step response experiments
with the empty calorimeter. Assuming a thin sample on top
of the membrane, the resistanceRFS (concerning the con-
v the
s
R e-
m e
i me
m ple.

3
in re-

g mple,
C step
e ase
t
d rmal
c rs
c again
mpty chip at 70C:RRM = 164 K W ,RFM = 2430 K W ,
FR = 12 K W−1,CM = 0.00019 J K−1 andCR = 0.145 J K−1.
hese values are somewhat temperature dependent,
ost fixed for the respective chip.
With the step response method and the named proc

uch values can be determined for every other temperat
ell, also during linear heating of the furnace. The fit func

eproduces the measured�T(t) function sufficiently well (se
ig. 4) and the above simple model can therefore be us
escribe our empty chip-calorimeter properly. Furtherm

he above mentioned assumptions that the rim is very
-

ection and radiation) of this model should be about
ame asRFM of the empty calorimeter (2430 K W−1) and

¯FM = (1/164 + 1/2430)−1 = 154 K W−1. These and the r
aining unknown parametersRMS (together with the tim

ndependentCS) can be determined precisely with the sa
ethod again, but now using the model including the sam

.2.4. The time independent solution
If we assume that we perform the heater power steps

ions where no reactions and transitions occur in the sa
Scan be considered as constant within the time of such a
xperiment and dCS/dtcan be neglected. For this special c
he equation system(16) looks like the system(14) but with
ifferent parameters. Therefore the solution for isothe
onditions has the form of Eq.(15)again and the paramete
an be determined in the same way as before and yield
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Fig. 6. Measured and simulated step response function of the calorimeter
containing a sample of 0.52 mg PCL on a 0.5 mg Al-foil (the difference is
smaller than the width of the line, both curves are almost one on top of the
other).

a sufficient nice fit (seeFig. 6). As a result we got the fol-
lowing values for a sample of 0.5 mg of poly-caprolactone
(PCL) (in a thin Al-foil to avoid contamination of
the chip-calorimeter):RFS= 1150 K W−1,RFM = 163 K W−1,
RMS = 310 K W−1 andCM = 0.00019 J K−1. From the mea-
suredCS = 0.00122 J K−1 the specific heat capacity of the
PCL sample can be calculated (if we take the heat ca-
pacity of the involved Al-foil into account) and yields
Cp(PCL) = 1.7 J g−1 K−1 at room temperature which is not
far from the literature value of 1.8 J g−1 K−1. RMS contains
the thermal resistance between membrane and the Al-foil as
well as the thermal resistance between foil and sample. This
value differs, of course for different samples (ca. 20 %) and
must be determined with the named pulse method in tempera-
ture regions without processes both in front and after regions
of transitions to see possible changes.

3.2.5. The general solution
With the results from the step response method, which can

be repeated at every moment (or temperature) outside of the
region of reactions and transitions in the sample, it is now pos-
sible to solve the differential equation system(16)—at least
numerically—and get the apparent heat capacity of the sam-
ple in dependence of the measured thermopile signal�T(t).
It is also possible to simulate the thermopile signal for a given
thermal event in the sample, or to simulate the response on a
s od-
e ol to
s r the
a ution
c ow-
e hole
p and
p alue,

the form is often that of an integral equation with terms of
exponential time behavior.

4. Conclusions

It has been shown that several methods exist and have suc-
cessfully been used to describe the thermal behavior of the
micro- or nano-calorimeters constructed on chip or IC basis.
With these methods it is also possible to calculate the heat
capacity of the sample from the measured signal. This is also
possible during thermal events producing latent heat in the
sample and causing a so-called excess heat capacity and thus
a time-dependent apparent heat capacity curve. The pulse-
or step-response method has proved to be a powerful tool
to determine the model parameters by fitting the expected
function to the measured step (or pulse) response function.
A modern computer technique together with powerful soft-
ware allows solving also rather complex problems (equation
systems) without larger difficulties. This enables to construct
very small and sensitive calorimeters with time constants in
the millisecond region and determine thermal properties even
of thin films without the need of a differential measurement
with twin calorimeters like in conventional DSC.

R

nd
984.
tial
nger-

27.
tte,

er,
.

ens.

03

[ 302

[
[ 415

[ . 71

[ ’94,

[ trum.

[
[ 74
tep- or pulse-like heater power stimulus. The powerful m
rn computer mathematics software is a very suitable to
olve the mathematical problems which may develop. Fo
bove described model the, of course, very complex sol
ould be calculated without larger problems, we desist, h
ver, from presenting it here: The equations would fill a w
age and looks very different for every case (chip type
roblem). These formulas are therefore of no general v
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11] W. Winter, G.W.H. Ḧohne, Thermochim. Acta 403 (2003) 43.
12] J. Lerchner, G. Wolf, C. Auguet, V. Torra, Thermochim. Acta

(2004) 9.
13] C. Auguet, J. Lerchner, V. Torra, G. Wolf, J. Therm. Anal. Cal

(2003) 951.
14] H. Reichl, A. Heuberger (Eds.), Micro System Technologies

VDE-Verlag, Berlin, Offenbach, 1994, pp. 773–782.
15] F. Fominaya, T. Fournier, P. Gandit, J. Chaussy, Rev. Sci. Ins

68 (11) (1997) 4191.
16] M. Merzlyakov, Thermochim. Acta 403 (2003) 65.
17] B. Revaz, D. O’Neil, L. Hull, F. Hellman, Rev. Sci. Instrum.

(2003) 4389.

http://www.xensor.nl/
http://www.xensor.nl/
http://ipht-jena.de/

	About models and methods to describe chip-calorimeters and determine sample properties from the measured signal
	Introduction
	Models and methods
	Physical basics
	The one-dimensional heat flow path method
	Network models
	Linear response methods

	Application examples
	Examples from literature
	Detailed example
	The model
	The chip-calorimeter without sample
	The chip-calorimeter with sample (a simplified model)
	The time independent solution
	The general solution


	References


